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+ Background: Bachelor’s in Computer Science

» 3rd Year EDCB Ph.D. student in the LTS2
laboratory for signal processing (Prof. Pierre

Vandergheynst)
» Working on building explainable machine mRNA
learning models to study translation elongation Secondary

Structure
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What is multimodal learning?
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B Multimodal learn

Issues with multimodal learning

= Modality Collapse: The model tends to only look at a subset of
modalities that are most useful in training whilst the rest could be
potentially more useful in implementation.
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Issues with multimodal learning

= Missing Modalities: Some samples don’t have information regarding
all the modalities that the model uses.
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Issues with multimodal learning

= Complex Inter-Modality Relationships: The different modalities might
have a different relationship with each other, so a simple fusion model
might not be enough to extract all the information.
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Multimodal learning with graphs

Multimodal Graph Learning (MGL)
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Multimodal Graph Learning (MGL

Images

Multimodal graph learning
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Multimodal Graph Learning (MGL)

Images

Language
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Output

Images

Image classification
Semantic image segmentation!
Image restoration
Image denoising
Human object interaction
Visual reasoning

Language

Relation extraction
Question answering
Summarization
Knowledge graph construction
Sentiment analysis

Physics

Progenitor particle classification
Physical dynamic simulation
Physical interaction simulation

Chemistry

Molecular property prediction
Chemical reaction prediction
Molecular generation
Drug-target interaction
Drug screening

Biology

Protein structure prediction

Protein protein interaction prediction
Protein binding site identification
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Single-modal
architectures
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o0 All-in-one multimodal
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MGL Blueprint

= MGL Blueprint
« Structure Learning

____________________________

O O Data modality i
£ '

O Multimodal data: graphs,
images, sound, physics

Learned graph nodes with ;
multimodal attributes |

r
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Structure Learning (SL)

Component 1: Identifying entities

Examined node
(4 modalities)
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Learning on Structure (LoS)

= Component 3: Propagating information | r------- SR :
O Current update E : E

| O 1-hop ' '
O 2-hop K ;

. E Representation : .

= MGL Blueprint ; ;
. - - ; ------------------------ E .

« Learning on Structure

Downstream |
representations!

Multimodal learning with graphs



=L MGL Blueprint

Structure Learning (SL)

Input Component 1: Identifying entities

____________________________

O Multimodal data: graphs,:
images, sound, physics !
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=L MGL on Images Use-Cases

a Image comprehension b Image denoising

1
 Non-local
i similar
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MGL on Images Use-Cases

=PrL

Human-object interaction

Human-object interaction

Propagating
information

Object detection
Humah detection

Surfboard
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Multimodal learning with graphs

Aspect Based Sentiment Analysis (ABSA)

Tasks:
= Find aspects (start, end)

= For each of the aspects
find their sentiment polarity
(negative, positive)

1 2 3

4 5 6 7 8

[Moules] were excellent, [lobster ravioli] was very salty.

Aspect: moules

Aspect: lobster ravioli

Start Index: 1
End Index: 1

Polarity: positive

Start Index: 4
End Index: 5

Polarity: negative

Zhou, Jie & Huang, Xiangji & Hu, Qinmin & He, Liang. (2020). Is position important? deep multi-
task learning for aspect-based sentiment analysis. Applied Intelligence. 50. 10.1007/s10489-020-

01760-x.
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Dogs are common pets and
have many different breeds. Dog
breeds vary in shape, size, and
color. Dogs are often called
“man’s best friend.” Cats aré
also common pets and have
many different breeds. Human
ownership of pets may date

back to at least 12,000 years...
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MGL in Natural Sciences

Physical interactions

Q velocity
O o0 ®

MGL Propagating
Component 3 information

Physics-informed
differential operators

mass

position

+ velocity
acceleration
J momentum

The usual goal is to understand more
about the underlying mechanics of these
physical processes.

To model the graphs, the experimental
data + physical constraints are used.
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Multimodal learning with graphs

MGL in Natural Sciences

Molecular reasoning

Intramolecular forces

MGL l Propagating

Component 3 information
Atomic features
atomic number  Bond descriptors
connectivity
valence bond length
aromaticity bond order

The graphs are generated using atoms as
nodes and chemical bonds as the edges.

The general goal is to predict chemical
properties of these different compounds.
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MGL in Natural Sciences

Protein modeling

MGL l Uncovering

Component 2 topology

Molecular
superpixel

Structure graph

The graphs are generated usually using
protein 3D structure or even the protein
surface information by assigning surface
vertices.

The usual tasks in this domain would be to
understand protein-protein interactions or
even protein-ligand interactions.
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About me

Background: Molecular Biology

4th Year EDCB Ph.D. student in the LTS2 laboratory
(Prof. Pierre Vandergheynst)

Previous work:
» Set representations and GNNs in chemistry
» Explainable ML for single cell omics

Current work
+ Latent graph learning with gene expression data
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ARTICLES nature methods

https://doi.org/10.1038/5s41592-021-01255-8

'.) Check for updates

SpaGCN: Integrating gene expression, spatial
location and histology to identify spatial domains
and spatially variable genes by graph
convolutional network

Jian Hu©@'™, Xiangjie Li?, Kyle Coleman®?, Amelia Schroeder', Nan Ma®3, David J. Irwin©4,
Edward B. Lee®?, Russell T. Shinohara' and Mingyao Li®"%

Maria Boulougouur
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=PrL  Spatially resolved transcriptomics

Maria Boulougouuri

= Gene expression profiling with spatial information to understand context

» Identify spatial regions that are coherent in gene expression and histology
* |dentify spatially variable genes

- Existing methods don’t incorporate spatial information

location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Longo, S.K., Guo, M.G., Ji, A.L. et al. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.
Nat Rev Genet 22, 627-644 (2021). https://doi.org/10.1038/s41576-021-00370-8
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

transcriptomics

Weighted undirected
graph

V represents a spot (instead of mMRNA)
- Segmentation-free approach

(2]
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

transcriptomics

Weighted undirected
graph

V represents a spot (instead of mMRNA)
- Segmentation-free approach

E reflects:
« Physical distance on slide
« Histological similarity

~
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

transcriptomics

Weighted undirected
graph

V represents a spot (instead of mMRNA)
- Segmentation-free approach

E reflects:
« Physical distance on slide
« Histological similarity

0

(>]_<') .V (XV’ yV)
o

o

2 50 pixels

erVr+gvag+vaVb
Vi+ Vo + V,

- Mean of RGB values (ry, gy, by)

Zy
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

Weighted undirected
graph

transcriptomics

V represents a spot (instead of mMRNA)
- Segmentation-free approach

E reflects:
« Physical distance on slide
« Histological similarity

0
(>]_<') .V (XV’ yV)
o
o
2 50 pixels
* Zy — ”z

Z o=

A X max (ox, oy) X §

Oz

- Rescaled according to st.dev.
and scaling factor s (can be adjusted to
increase importance of histology)

©
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

transcriptomics

Weighted undirected
graph

V represents a spot (instead of mMRNA)
- Segmentation-free approach

E reflects:
« Physical distance on slide
« Histological similarity

[ ] V (XV’ yV)

50 pixels

50 pixels

d(u,v) = \/(xu =k =0+ G =

- Distance in 3D Euclidean space
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

transcriptomics

Weighted undirected
graph

V represents a spot (instead of mMRNA)
- Segmentation-free approach

E reflects:
« Physical distance on slide
« Histological similarity

[ ] V (XV’ yV)

50 pixels

50 pixels

w(u, v) = exp (—%)

- Characteristic length scale | (can be
adjusted to increase neighbour
contribution to gene expression
aggregation)

-
[
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V represents a spot (instead of mMRNA)
- Segmentation-free approach

E reflects:
« Physical distance on slide
« Histological similarity

Feature matrix:
» 50 PCs of gene expression matrix

Histology image

Weighted undirected
graph

transcriptomics

location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Histology image

transcriptomics

Graph convolutional layer

RelLu

GCN
—> information aggregation
from the neighborhood

-
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Evaluate cluster assignment:
—1
(1 + h; — #,2)
—1
por (1= 45)

Probability of assigning spot to centroid

qij =

J,,;;;f\/ "/QL‘;.:\_,

Histology image RelLu Iterative clustering

Spatial domains

~—

transcriptomics a
Graph convolutional layer

location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network
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Evaluate cluster assignment:

‘1?/2?’:1 qij
;5:1 (q,?j//zﬁil qij’)

Maria Boulougouuri

Pij

Normalization for large clusters
Focusing on confidently-assigned spots

Ak —

RelLu Iterative clustering

Histology image

Spatial domains

transcriptomics a
Graph convolutional layer

location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network
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Spatial domains

Define the loss
KL(P||Q)
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RelLu

Graph convolutional layer

SpaGCN

Histology image
Spatial
transcriptomics
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SpaGCN: Integrating gene expression, spatial

location and histology to identify spatial domains

and spatially variable genes by graph

convolutional network

Metrics for specificity of spatial
expression patterns:

)
Target domain with domain- Domain-specific marker gene ) Moran S I
specific marker gene L Geary’S C

Target domain without domain-
specific marker gene

Domain-specific meta gene

SVGs

=
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Results: 7 datasets

= Primary pancreatic cancer tissue (human)
= Dorsolateral prefrontal cortex (human)

= Posterior brain (mouse)

= Cortex (mouse)

= Visual cortex (mouse)

= QOlfactory bulb (mouse)

= Hypothalamus (mouse)
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=PFL  Results: human pancreatic cancer

Histology stLearn BayesSpace

Louvain SpaGCN, s=1
Histological annotation

mm Cancer cells and desmoplasia
Duct epithelium
mm |nterstitium

Detects manually annotated
cancer region

location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network
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location and histology to identify spatial domains
and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

L

Results: human pancreatic cancer

Moran’s / Geary’s C
1.00 1.00
07519 | : t 0.75 | .
Method
E3 SPARK
SpatialDE
0.25 0.25 By Spotia
0 - RS 0 -
-0.25 I I I -0.25 I I I

Cancer region SVGs have higher spatial autocorrelation
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location and histology to identify spatial domains

and spatially variable genes by graph

SpaGCN: Integrating gene expression, spatial
convolutional network

Conclusions

= Aims:
* |dentification of spatial domains
* |dentification of domain enriched spatially variable genes

= Advantages:
» Weights of histology can be adjusted (tissue-dependent)
» Graph weights are updated (technology-dependent)
= Limitations:
» Gene expression is the main driver
« Spatial and cell type variation are not distinguished

N
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A RTI C L E L '.) Check for updates |
https://doi.org/10.1038/s41467-021-23774-w OPEN

MOGONET integrates multi-omics data using
graph convolutional networks allowing patient
classification and biomarker identification

Tongxin Wang® 18 Wei Shao® 28, Zhi Huang2'3, Haixu Tang1, Jie Zhang® 4 Zhengming Ding ) 5™ &

Kun Huang@® 267
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

samples

MOGONET

mRNA expression

Multi-omics data

ROSMAP
- 2 classes

200

200

200

LGG
- 2 classes

2000

2000

548

KIPAN
- 3 classes

2000

2000

445

BRCA
- 5 classes

1000

1000

503

N
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/ Omics-specific GCN:
mRNA expression
o _EN B

* Vrepresents a sample
E reflects cosine distance of samples
Threshold € determined given a parameter k {2, 10}
- represents the average number of edges per node

k = Zl(s(xi,xj) >¢)/n
ij

GCNrna

i

GCNeth

miRNA expression

| N
g HE'HEHE B —
: N NEEE GCNipna
i'H_ HE H

>

W\

Multi-omics data Sample similarity ~ Omics-specific

networks GCNs

classification and biomarker identification

MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

samples

MOGONET

mRNA expression

miRNA expression

N
'H BN B —
N B
H BE B

e

Multi-omics data networks

Sample similarity ~ Omics-specific

label distribution

GCNpgna |

GCNpeth

—

GCNmiRNA — E

Initial
prediction

GCNs

Pre-training of omics-specific GCNs
For every epoch

- Fix VCDN, train GCNs

- Fix GCNs, train VCDN

—

!¢ &

n
Cross-omics View Correlation ~ Final label
discovery tensor Discovery Network prediction

Fully connected NN

N
o
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

Results

Method

KNN
SVM
Lasso
RF
XGBoost
NN

— Concatenation of preprocessed features as input

GRridge
block PLSDA
block sPLSDA

— Multi-omics integration methods

NN_NN

NN_VCDN
MOGONET_NN (Ours)
MOGONET (QOurs)

—— Internal controls

N
-2
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

L

Results

Method

KNN

SVM

Lasso

RF

XGBoost

NN

GRridge

block PLSDA
block sPLSDA

NN_NN

NN_VCDN
MOGONET_NN (Ours)
MOGONET (Ours)

»

NN_NN

—> fully connected NN for omics-specific classification
—> fully connected NN for multi-omics integration
(vector instead of tensor as input)
NN_VCDN

—> fully connected NN for omics-specific classification
- VCDN for multi-omics integration
MOGONET_NN

- GCNs for omics-specific classification

—> fully connected NN for multi-omics integration

N
~
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

Table 2 Classification results on ROSMAP dataset.

Method ACC F1 AUC

KNN 0.657+£0.036 0.671£0.044 0.709 £0.045
SVM 0.770+£0.024 0.778 £0.016 0.770+£0.026
Lasso 0.694 £ 0.037 0.730£0.033 0.770+0.035
RF 0.726 £ 0.029 0.734 £0.021 0.811£0.019
XGBoost 0.760 £ 0.046 0.772 £0.045 0.837+£0.030
NN 0.755 £ 0.021 0.764 £0.021 0.827 £0.025
GRridge 0.760+£0.034 0.769 £ 0.029 0.841+0.023
block PLSDA 0.742 £ 0.024 0.755+£0.023 0.830 £0.025
block sPLSDA 0.753+0.033 0.764 £0.035 0.838 £0.021
NN_NN 0.766 £ 0.023 0.777 £0.019 0.819 £0.017
NN_VCDN 0.775+£0.026 0.790 £0.018 0.843 £0.021
MOGONET_NN (Ours) 0.804x0.016 0.808 £0.010 0.858£0.024
MOGONET (Ours) 0.815+£0.023 0.821£0.022 0.874 +£0.012
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

Table 3 Classification results on LGG dataset.

Method ACC F1 AUC

KNN 0.729+0.034 0.738 £+0.033 0.799 £ 0.038
SVM 0.754 £0.046 0.757 £0.050 0.754 +0.046
Lasso 0.761+£0.018 0.767 £+ 0.022 0.823£0.027
RF 0.748 £ 0.012 0.742 £0.010 0.823+£0.010
XGBoost 0.756 £ 0.040 0.767 £0.032 0.840+£0.023
NN 0.737 £0.023 0.748 £ 0.024 0.810£0.037
GRridge 0.746 £ 0.038 0.756 £ 0.036 0.826 £0.044
block PLSDA 0.759+£0.025 0.738 £0.031 0.825+0.023
block sPLSDA 0.685+0.027 0.662 +£0.030 0.730+£0.026
NN_NN 0.740+0.039 0.756 £0.036 0.824 £0.036
NN_VCDN 0.740+£0.030 0.771£0.021 0.826 £0.031
MOGONET_NN (QOurs) 0.804 +£0.025 0.811£0.023 0.832+0.029
MOGONET (Qurs) 0.816 £0.016 0.814+£0.014 0.840+£0.027
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MOGONET integrates multi-omics data using
B graph convolutional networks allowing patient

classification and biomarker identification

Results

Table 4 Classification results on BRCA dataset.

Method ACC F1_weighted F1_macro

KNN 0.742+0.024 0.730+0.023 0.682+0.025
SVM 0.729 +0.018 0.702+0.015 0.640 +0.017
Lasso 0.732+0.012 0.698 +0.015 0.642 £0.026
RF 0.754 £0.009 0.733+0.010 0.649 £ 0.013
XGBoost 0.781+0.008 0.764 £ 0.010 0.701+0.017
NN 0.754+0.028 0.740+0.034 0.668 £ 0.047
GRridge 0.745+0.016 0.726 £ 0.019 0.656 +0.025
block PLSDA 0.642 +0.009 0.534+0.014 0.369+0.017
block sPLSDA 0.639+0.008 0.522+0.016 0.351£0.022
NN_NN 0.796 £ 0.012 0.784+0.014 0.723+0.018
NN_VCDN 0.792 £0.010 0.781+0.006 0.721+£0.018
MOGONET_NN (Ours) 0.805+0.017 0.782+0.030 0.737£0.038
MOGONET (Ours) 0.829+0.018 0.825+0.016 0.774+0.017
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MOGONET integrates multi-omics data using

B graph convolutional networks allowing patient
classification and biomarker identification

Conclusions

= Aims:
» Supervised multi-omics integration method for biomedical classification tasks
« Demonstrate that both GCNs and VCDN are essential
» Adversarial attacks for biomarker discovery

= Advantages:
» GCNs can utilize both the features and the geometrical structures of the data

* Flexibility (number of omics, type, etc.)

 First method to consider the correlations among different omics data types.
—> less biased toward certain omics data types

» Limitations:
 Benchmark selection
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General conclusions

= Underexplored field in biological applications

= What is the definition of a modality

« Different views of the same entity (histology + spatial transcriptomics)
« Different entities (MRNAs + miRNAs)
» Does base knowledge count (PPI)

= |Ssues:
* Lack of data

 Lack of correlation between different views of the same entity (genes + proteins)
» Sparsity
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