od com din sociano of lob conition

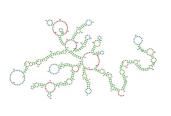
Multimodal Learning with Graphs

Yasha Ektefaie, George Dasoulas, Ayush Noori, Maha Farhat, and Marinka Zitnik

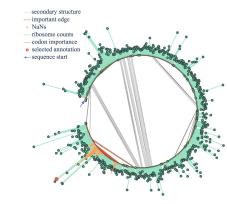
Vamsi

Initiation Elongation Termination

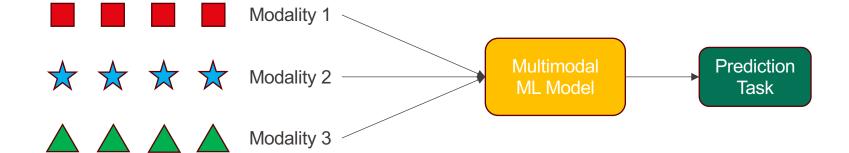
- Background: Bachelor's in Computer Science
- 3rd Year EDCB Ph.D. student in the LTS2 laboratory for signal processing (Prof. Pierre Vandergheynst)
- Working on building explainable machine learning models to study translation elongation



mRNA Secondary Structure



What is multimodal learning?



Issues with multimodal learning

- Modality Collapse: The model tends to only look at a subset of modalities that are most useful in training whilst the rest could be potentially more useful in implementation.
- Missing Modalities: Some samples don't have information regarding all the modalities that the model uses.
- Complex Inter-Modality Relationships: The different modalities might have a different relationship with each other, so a simple fusion model might not be enough to extract all the information.

Issues with multimodal learning

- Modality Collapse: The model tends to only look at a subset of modalities that are most useful in training whilst the rest could be potentially more useful in implementation.
- Missing Modalities: Some samples don't have information regarding all the modalities that the model uses.
- Complex Inter-Modality Relationships: The different modalities might have a different relationship with each other, so a simple fusion model might not be enough to extract all the information.

Issues with multimodal learning

- Modality Collapse: The model tends to only look at a subset of modalities that are most useful in training whilst the rest could be potentially more useful in implementation.
- Missing Modalities: Some samples don't have information regarding all the modalities that the model uses.
- Complex Inter-Modality Relationships: The different modalities might have a different relationship with each other, so a simple fusion model might not be enough to extract all the information.

Multimodal Graph Learning (MGL)

Images

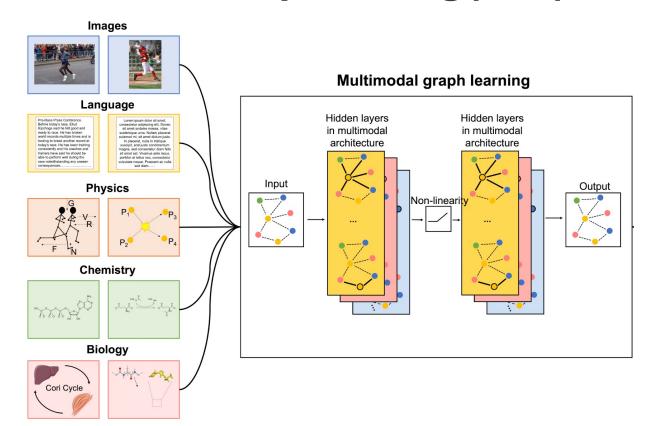
Language

Physics

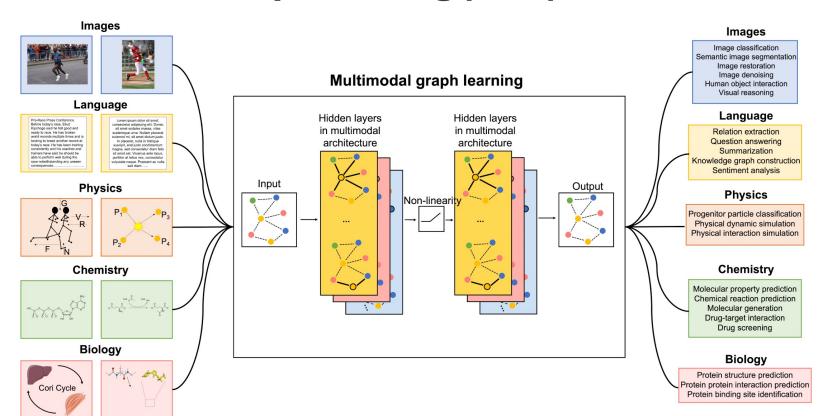
Chemistry

Biology

Multimodal Graph Learning (MGL)

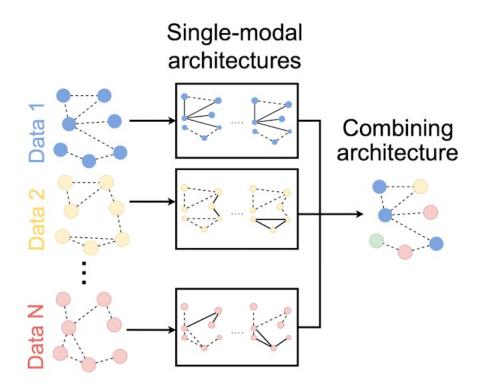


Multimodal Graph Learning (MGL)



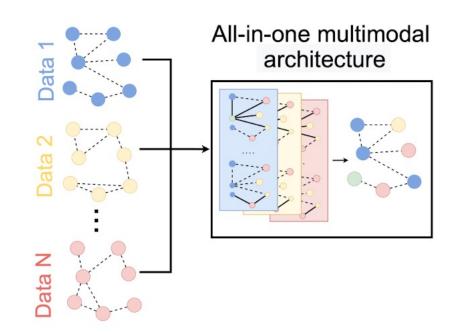
MGL Blueprint

- Simple single-modal
- All-in-one model
- MGL Blueprint



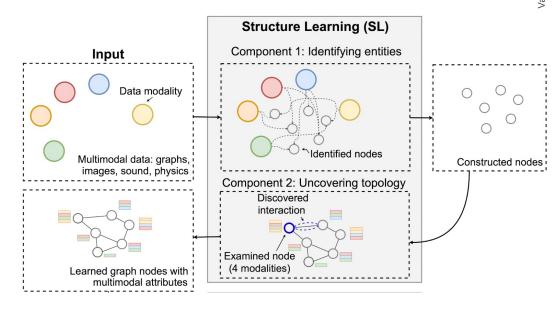
MGL Blueprint

- Simple single-modal
- All-in-one model
- MGL Blueprint



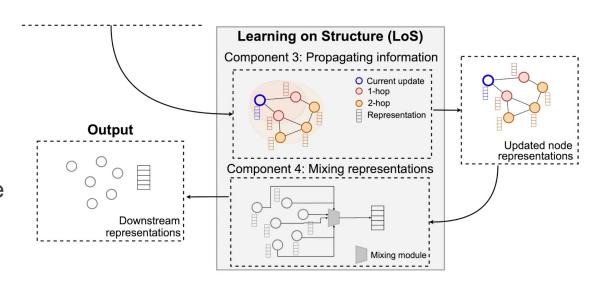
MGL Blueprint

- Simple single-modal
- All-in-one model
- MGL Blueprint
 - Structure Learning
 - Learning on Structure



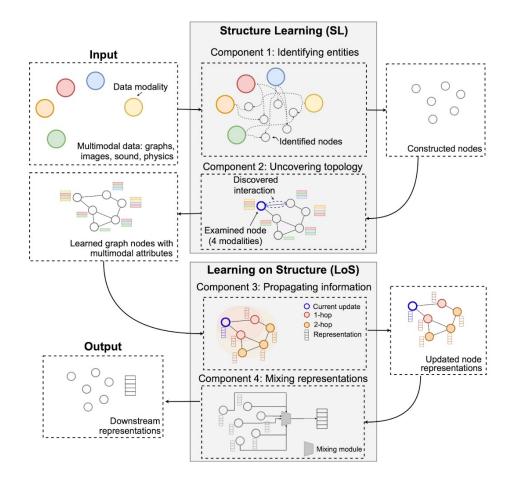
MGL Blueprint

- Simple single-modal
- All-in-one model
- MGL Blueprint
 - Structure Learning
 - Learning on Structure



MGL Blueprint

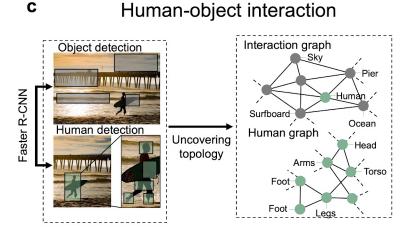
- Simple single-modal
- All-in-one model
- MGL Blueprint
 - Structure Learning
 - Learning on Structure

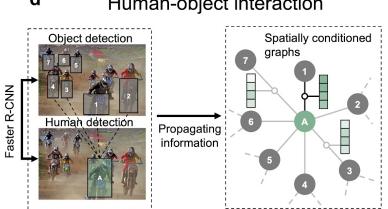


MGL on Images Use-Cases

MGL on Images Use-Cases

d Human-object interaction

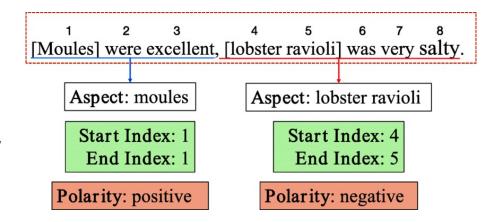




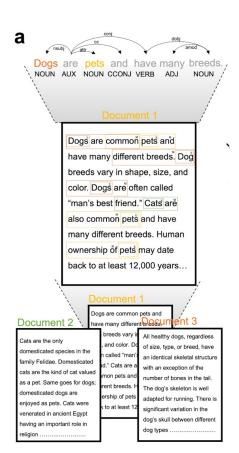
Aspect Based Sentiment Analysis (ABSA)

Tasks:

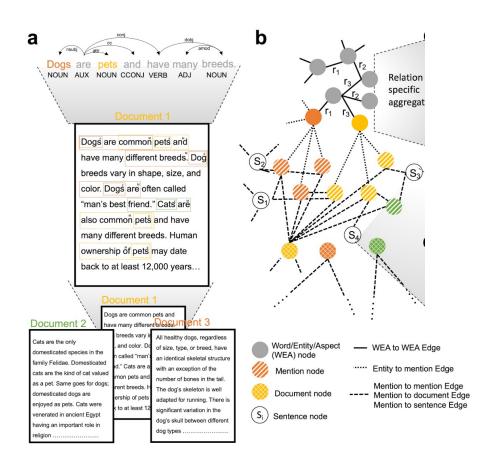
- Find aspects (start, end)
- For each of the aspects find their sentiment polarity (negative, positive)



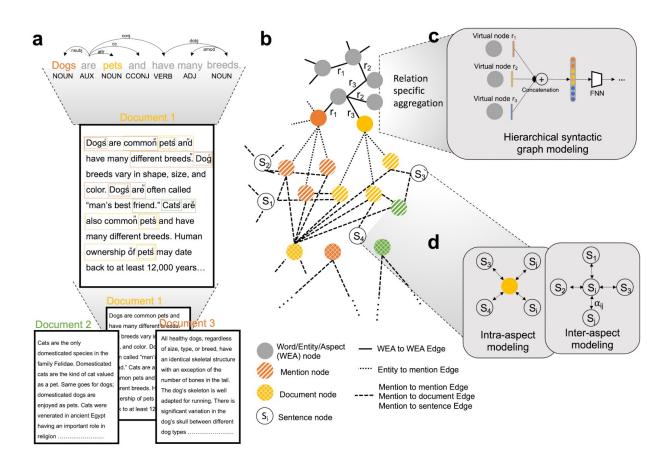
MGL on ABSA



MGL on ABSA

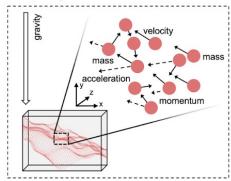


MGL on ABSA



MGL in Natural Sciences

Physical interactions

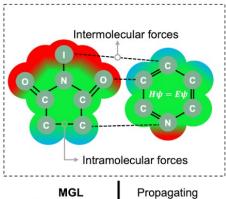




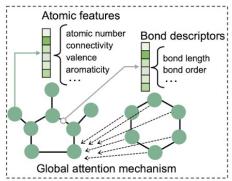
- The usual goal is to understand more about the underlying mechanics of these physical processes.
- To model the graphs, the experimental data + physical constraints are used.

MGL in Natural Sciences

Molecular reasoning



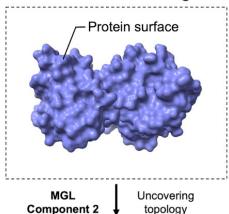
Component 3 information

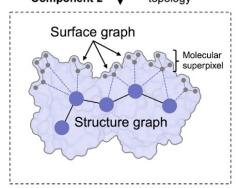


- The graphs are generated using atoms as nodes and chemical bonds as the edges.
- The general goal is to predict chemical properties of these different compounds.

MGL in Natural Sciences

Protein modeling





- The graphs are generated usually using protein 3D structure or even the protein surface information by assigning surface vertices.
- The usual tasks in this domain would be to understand protein-protein interactions or even protein-ligand interactions.

Multimodal Learning with graphs

About me

- Background: Molecular Biology
- 4th Year EDCB Ph.D. student in the LTS2 laboratory (Prof. Pierre Vandergheynst)
- Previous work:
 - Set representations and GNNs in chemistry
 - Explainable ML for single cell omics
- Current work
 - Latent graph learning with gene expression data

https://doi.org/10.1038/s41592-021-01255-8

nature methods

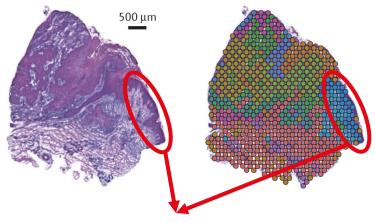
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

Jian Hu¹, Xiangjie Li², Kyle Coleman¹, Amelia Schroeder¹, Nan Ma¹, David J. Irwin¹, Edward B. Lee¹, Russell T. Shinohara¹ and Mingyao Li¹

Spatially resolved transcriptomics

Maria Boulougouuri

Gene expression profiling with spatial information to understand context

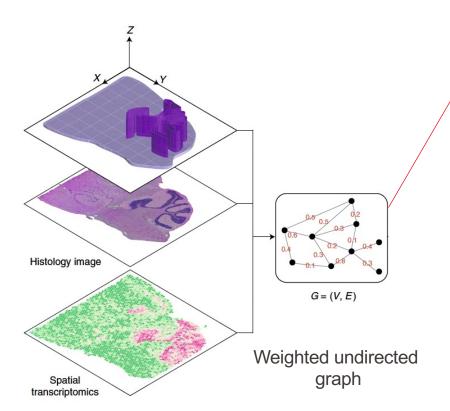


- Identify spatial regions that are coherent in gene expression <u>and</u> histology
- Identify spatially variable genes
- → Existing methods don't incorporate spatial information

SpaGCN: Integrating gene expression, spat location and histology to identify spatial domain spatially variable genes by graph

SpaGCN

SpaGCN



V represents a spot (instead of mRNA)

→ Segmentation-free approach

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

SpaGCN

V represents a spot (instead of mRNA)

→ Segmentation-free approach

E reflects:

- Physical distance on slide
- Histological similarity

SpaGCN

V represents a spot (instead of mRNA)

→ Segmentation-free approach

E reflects:

- Physical distance on slide
- Histological similarity

$$\begin{array}{c|c} \underline{\overset{\circ}{\otimes}} & V(x_v, y_v) \\ \underline{\overset{\circ}{\otimes}} & 50 \text{ pixels} \end{array}$$

$$z_{v} = \frac{r_{v} \times V_{r} + g_{v} \times V_{g} + b_{v} \times V_{b}}{V_{r} + V_{g} + V_{b}}$$

 \rightarrow Mean of RGB values (r_v, g_v, b_v)

SpaGCN

V represents a spot (instead of mRNA)

→ Segmentation-free approach

E reflects:

- Physical distance on slide
- Histological similarity

$$V(x_v, y_v)$$
 $V(x_v, y_v)$
50 pixels

$$z_{\nu}^* = \frac{z_{\nu} - \mu_z}{\sigma_z} \times \max(\sigma_x, \sigma_y) \times s_{\nu}$$

→ Rescaled according to st.dev. and scaling factor **s** (can be adjusted to increase importance of histology)

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

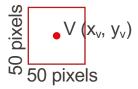
SpaGCN

V represents a spot (instead of mRNA)

→ Segmentation-free approach

E reflects:

- Physical distance on slide
- Histological similarity

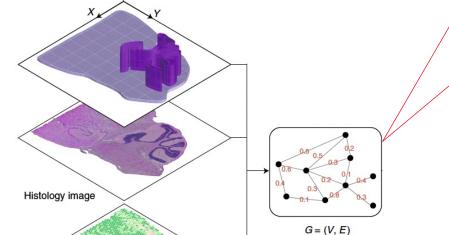


$$d(u,v) = \sqrt{(x_u - x_v)^2 + (y_u - y_v)^2 + (z_u^* - z_v^*)^2}.$$

→ Distance in 3D Euclidean space

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

SpaGCN



Weighted undirected

graph

E reflects:

- Physical distance on slide
- Histological similarity

$$\nabla v = \nabla v$$

$$w(u, v) = \exp\left(-\frac{d(u, v)^2}{2l^2}\right)$$

→ Characteristic length scale I (can be adjusted to increase neighbour contribution to gene expression aggregation)

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph

Spatial

transcriptomics

SpaGCN

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph

SpaGCN

GCN

→ information aggregation from the neighborhood

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

SpaGCN

Histology image

Spatial transcriptomics G = (V, E)

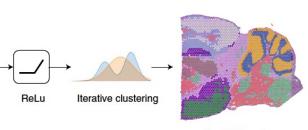
Graph convolutional layer

Maria Boulougouuri

Evaluate cluster assignment:

$$q_{ij} = \frac{\left(1 + h_i - \mu_j^2\right)^{-1}}{\sum_{j'=1}^{K} \left(1 + h_i - \mu_{j'}^2\right)^{-1}}$$

Probability of assigning spot to centroid



Spatial domains

SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

SpaGCN

Histology image

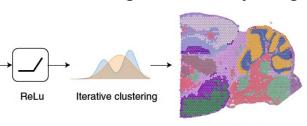
Spatial transcriptomics G = (V, E)

Graph convolutional layer

Evaluate cluster assignment:

$$p_{ij} = \frac{q_{ij}^2 / \sum_{i=1}^{N} q_{ij}}{\sum_{j'=1}^{K} \left(q_{ij'}^2 / \sum_{i=1}^{N} q_{ij'} \right)}$$

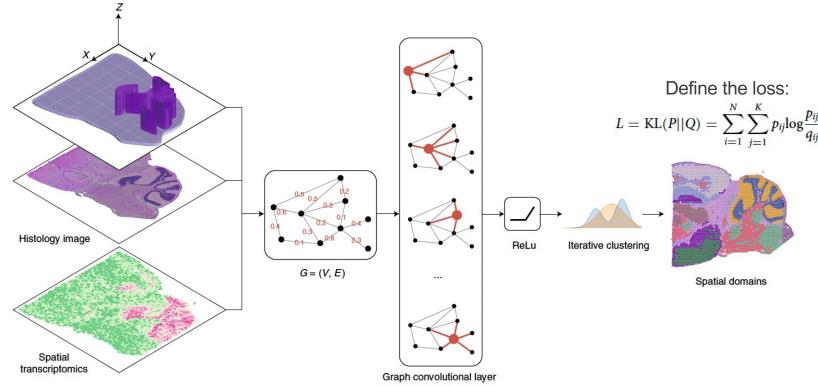
Normalization for large clusters Focusing on confidently-assigned spots



Spatial domains

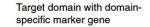
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

SpaGCN



SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

SpaGCN

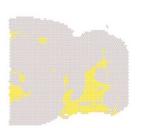


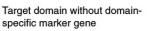
Domain-specific marker gene

expression patterns:

Moran's I

Geary's C





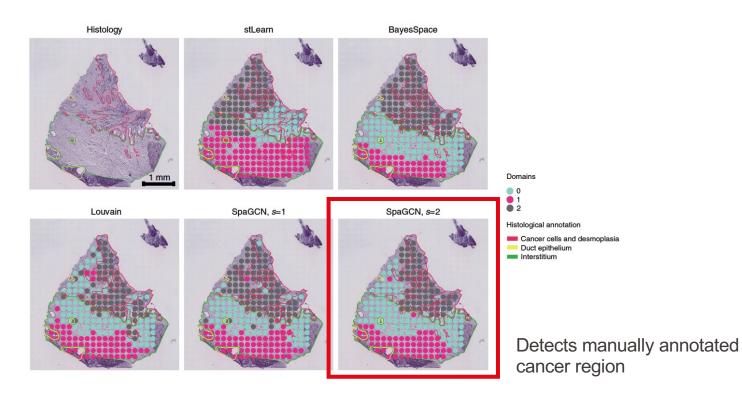
Domain-specific meta gene

SVGs

Results: 7 datasets

- Primary pancreatic cancer tissue (human)
- Dorsolateral prefrontal cortex (human)
- Posterior brain (mouse)
- Cortex (mouse)
- Visual cortex (mouse)
- Olfactory bulb (mouse)
- Hypothalamus (mouse)

Results: human pancreatic cancer



Results: human pancreatic cancer

Cancer region SVGs have higher spatial autocorrelation

Conclusions

- Aims:
 - Identification of spatial domains
 - Identification of domain enriched spatially variable genes
- Advantages:
 - Weights of histology can be adjusted (tissue-dependent)
 - Graph weights are updated (technology-dependent)
- Limitations:
 - Gene expression is the main driver
 - Spatial and cell type variation are not distinguished

ARTICLE

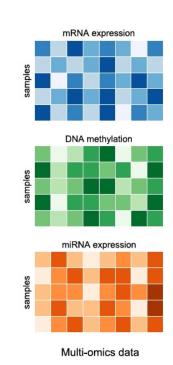
https://doi.org/10.1038/s41467-021-23774-w

OPEN

MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification

Tongxin Wang $^{\bullet}$ 1,8 , Wei Shao $^{\bullet}$ 2,8 , Zhi Huang 2,3 , Haixu Tang 1 , Jie Zhang $^{\bullet}$ 4 , Zhengming Ding $^{\bullet}$ $^{5 \boxtimes}$ & Kun Huang $^{\bullet}$ $^{2,6,7 \boxtimes}$

MOGONET



ROSMAP → 2 classes	LGG → 2 classes	KIPAN → 3 classes	BRCA → 5 classes
200	2000	2000	1000
200	2000	2000	1000
200	548	445	503

MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification

MOGONET

networks

GCNs

Omics-specific GCN:

- V represents a sample
- E reflects cosine distance of samples
- Threshold ε determined given a parameter **k** {2, 10}
 - represents the average number of edges per node

$$k = \sum_{i,j} I(s(\mathbf{x}_i, \mathbf{x}_j) \ge \epsilon)/n$$

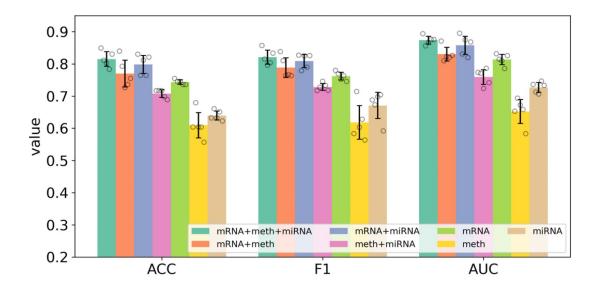
MOGONET

Results

NN NN

- → fully connected NN for omics-specific classification
- → fully connected NN for multi-omics integration (vector instead of tensor as input)
- NN_VCDN
 - → fully connected NN for omics-specific classification
 - → VCDN for multi-omics integration
- MOGONET_NN
 - → GCNs for omics-specific classification
 - → fully connected NN for multi-omics integration

Table 2 Classification results on ROSMAP dataset. **ACC** Method F1 AUC KNN 0.671 ± 0.044 0.709 ± 0.045 0.657 ± 0.036 SVM 0.770 ± 0.024 0.778 ± 0.016 0.770 ± 0.026 0.770 ± 0.035 Lasso 0.694 ± 0.037 0.730 ± 0.033 RF 0.726 ± 0.029 0.734 ± 0.021 0.811 ± 0.019 XGBoost 0.760 ± 0.046 0.772 ± 0.045 0.837 ± 0.030 NN 0.755 ± 0.021 0.764 ± 0.021 0.827 ± 0.025 GRridge 0.760 ± 0.034 0.769 ± 0.029 0.841 ± 0.023 0.830 ± 0.025 block PLSDA 0.742 ± 0.024 0.755 ± 0.023 block sPLSDA 0.753 ± 0.033 0.764 ± 0.035 0.838 ± 0.021 NN NN 0.819 ± 0.017 0.766 ± 0.023 0.777 ± 0.019 NN VCDN 0.775 ± 0.026 0.790 ± 0.018 0.843 ± 0.021 MOGONET NN (Ours) 0.808 ± 0.010 0.858 ± 0.024 0.804 ± 0.016 MOGONET (Ours) 0.815 ± 0.023 0.821 ± 0.022 0.874 ± 0.012



Results

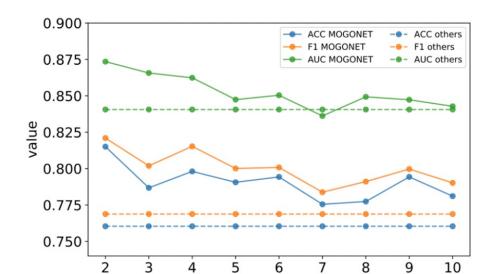


Table 3 Classification results on LGG dataset. Method ACC F1 **AUC** KNN 0.729 ± 0.034 0.738 ± 0.033 0.799 ± 0.038 SVM 0.754 ± 0.046 0.754 ± 0.046 0.757 ± 0.050 Lasso 0.761 ± 0.018 0.767 ± 0.022 0.823 ± 0.027 RF 0.748 ± 0.012 0.742 ± 0.010 0.823 ± 0.010 XGBoost 0.756 ± 0.040 0.767 ± 0.032 0.840 ± 0.023 NN 0.737 ± 0.023 0.748 ± 0.024 0.810 ± 0.037 0.746 ± 0.038 0.826 ± 0.044 GRridge 0.756 ± 0.036 block PLSDA 0.759 ± 0.025 0.738 ± 0.031 0.825 ± 0.023 block sPLSDA 0.730 ± 0.026 0.685 ± 0.027 0.662 ± 0.030 NN NN 0.824 ± 0.036 0.740 ± 0.039 0.756 ± 0.036 0.771 ± 0.021 0.826 ± 0.031 NN_VCDN 0.740 ± 0.030 MOGONET NN (Ours) 0.811 ± 0.023 0.832 ± 0.029 0.804 ± 0.025 MOGONET (Ours) 0.816 ± 0.016 0.840 ± 0.027 0.814 ± 0.014

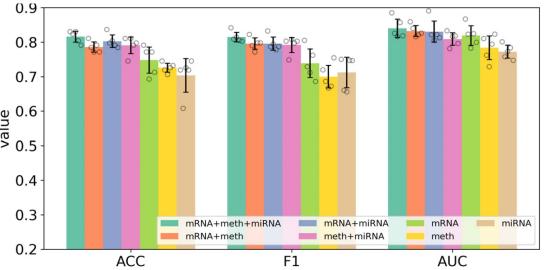
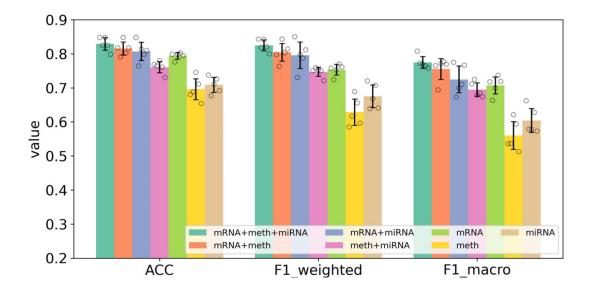
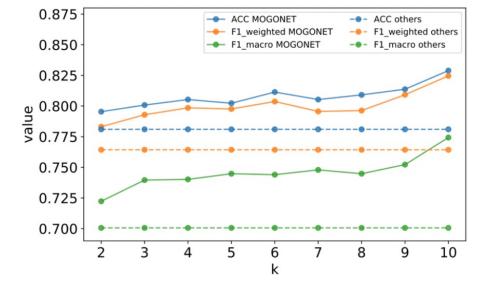


Table 4 Classification results on BRCA dataset.			
Method	ACC	F1_weighted	F1_macro
KNN	0.742 ± 0.024	0.730 ± 0.023	0.682 ± 0.025
SVM	0.729 ± 0.018	0.702 ± 0.015	0.640 ± 0.017
Lasso	0.732 ± 0.012	0.698 ± 0.015	0.642 ± 0.026
RF	0.754 ± 0.009	0.733 ± 0.010	0.649 ± 0.013
XGBoost	0.781 ± 0.008	0.764 ± 0.010	0.701 ± 0.017
NN	0.754 ± 0.028	0.740 ± 0.034	0.668 ± 0.047
GRridge	0.745 ± 0.016	0.726 ± 0.019	0.656 ± 0.025
block PLSDA	0.642 ± 0.009	0.534 ± 0.014	0.369 ± 0.017
block sPLSDA	0.639 ± 0.008	0.522 ± 0.016	0.351 ± 0.022
NN_NN	0.796 ± 0.012	0.784 ± 0.014	0.723 ± 0.018
NN_VCDN	0.792 ± 0.010	0.781 ± 0.006	0.721 ± 0.018
MOGONET_NN (Ours)	0.805 ± 0.017	0.782 ± 0.030	0.737 ± 0.038
MOGONET (Ours)	0.829 ± 0.018	0.825 ± 0.016	0.774 ± 0.017





Conclusions

Aims:

- Supervised multi-omics integration method for biomedical classification tasks
- Demonstrate that both GCNs and VCDN are essential
- Adversarial attacks for biomarker discovery

Advantages:

- GCNs can utilize both the features and the geometrical structures of the data
- Flexibility (number of omics, type, etc.)
- First method to consider the correlations among different omics data types.
 → less biased toward certain omics data types

Limitations:

Benchmark selection

General conclusions

- Underexplored field in biological applications
- What is the definition of a modality
 - Different views of the same entity (histology + spatial transcriptomics)
 - Different entities (mRNAs + miRNAs)
 - Does base knowledge count (PPI)
- Issues:
 - Lack of data
 - Lack of correlation between different views of the same entity (genes + proteins)
 - Sparsity

laria Boulougouuri

Thank you!

Maria Boulougouuri